

PORTAFOLIO DE EVIDENCIAS 2da OPORTUNIDAD EXTRAORDINARIA

LA CIENCIA DEL MOVIMIENTO

Nombre del estudiante: _			
Matrícula:	Fecha:		/ 2022
Docente:	Grupo:		

El presente portafolio forma parte del 50% de la calificación. Este valor se obtendrá siempre y cuando cumpla con los siguientes requisitos:

- Sigue las <u>instrucciones proporcionadas por el maestro</u> para el llenado de este portafolio.
- Escribe tus <u>datos de identificación completos</u>.
- 3. <u>Sube y envía</u> este portafolio <u>en formato PDF</u>, el <u>día</u> y la <u>hora</u> en que el <u>maestro lo asigne</u> en el <u>apartado de Tareas</u> del <u>equipo</u> correspondiente a la <u>materia en MS Teams</u>, donde tu maestro lo revisará.
- 4. FAVOR DE AGREGAR TU NOMBRE COMPLETO EN CADA HOJA.

ADVERTENCIA

El plagio y comercio del material académico contenido en este portafolio, será sancionado en los términos de la Legislación Universitaria.

Lineamientos específicos de academia:

El presente portafolio forma parte del 50 % de tu calificación. Este valor se obtendrá siempre y cuando se cumpla con los siguientes requisitos:

- 1. Datos de identificación completos.
- 2. La solución del portafolio será con tinta azul y a mano, recuerda que se solicitan los procedimientos completos.
- 3. Tomar foto a cada hoja, para hacer un documento de WORD, para convertirlo después a PDF.
- 4. Este portafolio debe cargarse en TEAMS en formato PDF, el día y hora que el maestro lo señale en el apartado de TAREAS, del equipo correspondiente a la materia.
- 5. FAVOR DE VERIFICAR EL ENVÍO CORRECTO DEL PORTAFOLIO Y AGREGAR TU NOMBRE EN CADA HOJA.

ETAPA 1: FÍSICA, LA CIENCIA DE LAS MEDICIONES

I. INSTRUCCIONES: Contesta brevemente los siguientes reactivos

1. Ciencia que estudia en la naturaleza, la materia y la energía y las relaciones que existen entre ambas:	
Es la rama de la Física que describe el movimiento	
de los cuerpos	
3. Es la rama de la física que estudia el comportamiento	
de la luz, sus características y sus manifestaciones.	
4. Estudia la circulación y transferencia de la energía y	
el calor y describe cómo la energía infunde movimiento	
o realiza un trabajo.	
5. La física cuántica, la relatividad la física atómica son	
ramas de	
6. Es una rama de la Física que estudia y unifica los	
fenómenos eléctricos y magnéticos en una sola teoría	
7. Es una rama de la física interdisciplinaria que estudia	
el sonido, infrasonido y ultrasonido, es decir ondas	
mecánicas que se propagan a través de la materia	
(tanto sólida como líquida o gaseosa) (no se propagan	
en el vacío) por medio de modelos físicos y	
matemáticos.	
8. Es todo aquello que se puede medir y tiene una	
representación en el mundo real.	
9. Unidades físicas que se seleccionan arbitrariamente	
y no se definen en función de otras.	
10. Estas cantidades están plenamente definidas	
cuando se proporciona su magnitud (número y unidad	
de medición)	
11. Cantidad física que tiene magnitud, dirección y	
sentido.	
12. La distancia, masa, tiempo, temperatura, corriente	
eléctrica, etc., son ejemplos de cantidades:	
13. Es un ejemplo de unidad derivada:	
14. Es la comparación de una propiedad o magnitud	
física con otra de la misma clase.	
15. Es la duración de 9 192 631 770 ciclos de la	
radiación asociada a la transición entre dos niveles de	
un átomo de cesio	
16. Es la masa de un prototipo de platino irradiado. Se	
aprobó en 1889 y se conserva el original en el pabellón	
Breteuil en Sévres, Francia.	
13. Es la longitud del camino recorrido por la luz en el	
vacío durante un tiempo de 1/299 792 458 de segundo,	
con base en que la velocidad de la luz en el vacío es	
exactamente 299 792 458 metros/segundo.	

II. PROBLEMAS DE CONVERSIÓN DE UNIDADES

- 1. 40 m/s a km/h
- 2. 36 km/hr a m/s
- 3. Un cable de cobre de 4.6 km se usa para hacer clips de conducción con una longitud de 2.3 cm que se usan en arneses para autos ¿cuántos clips se producen?

ETAPA 2. CINEMÁTICA Y LAS LEYES DEL MOVIMIENTO DE LOS CUERPOS

I. INSTRUCCIONES: Contesta brevemente los siguientes reactivos

1. Rama de la Física que estudia el movimiento de	
los cuerpos:	
2. Rama de la mecánica que estudia el movimiento	
de los cuerpos atendiendo a su descripción	
matemática sin considerar las causas que lo	
producen o modifican.	
3. Estudia el movimiento de los cuerpos	
atendiendo a las causas que lo producen o	
modifican:	
4. Cantidad escalar que representa la magnitud de	
la longitud de la trayectoria real que recorre un	
móvil.	
5. Cantidad vectorial que representa el cambio de	
posición de un móvil desde un punto inicial a un	
punto final en línea recta:	
6. Cantidad escalar que se define como la división	
de la distancia total que recorre un móvil entre el	
tiempo total:	
7. Cantidad vectorial que se define como la división	
del desplazamiento total de un móvil y el tiempo	
total:	
8. Nombre del movimiento que tiene un cuerpo,	
cuando sigue la trayectoria de una línea recta y	
recorre distancias iguales en tiempos iguales:	
9. Es el lugar o punto a partir del cual podemos	
determinar el movimiento del objeto que deseamos	
analizar.	

10. En física, toda la masa del cuerpo se	
concentrará en un punto, por lo tanto, cuerpo,	
objeto o punto son lo mismo que:	
11. Tipo de fuerzas que se deben a la atracción	
que existe entre dos cuerpos debido a sus masas y	
a la distancia que los separa.	
12. Tipo de fuerzas que se ejercen entre partículas	
cargadas eléctricamente.	
13. Tipo de fuerzas que se producen en el núcleo	
de los átomos.	
14. Propiedad que tienen los cuerpos de resistirse	
a un cambio de su movimiento o de su estado de	
reposo.	
15. Se define como la medida cuantitativa de la	
inercia, propiedad inherente a un cuerpo.	
16. Fuerza de atracción que ejerce la tierra sobre	
los cuerpos.	
17. "Todo cuerpo en reposo o con movimiento	
uniforme permanecerá en reposo o con velocidad	
que lleve a menos que se le aplique una fuerza	
exterior".	
18. "La aceleración de un cuerpo es directamente	
proporcional a la fuerza aplicada e inversamente	
proporcional a la masa"	
19. La fórmula F=ma es una expresión de la:	
20. "A toda fuerza de acción le corresponde una	
fuerza de reacción igual magnitud, pero de sentido	
contrario".	
21. Unidad de fuerza del sistema internacional y	
que se define como la fuerza que aplicada a una	
masa de 1 kg le produce una aceleración de 1 m/s ²	

II. PROBLEMAS DE MOVIMIENTO Y FUERZA

- 1. Una persona se desplaza 300 m al oeste y llego 400 al sur, todo en un tiempo de 20 min. Calcula:
- A. La distancia total
- B. El desplazamiento
- C. La rapidez media
- D. La velocidad media
- 2. Un auto de 900 kg parte del reposo y después de 5 segundos va una velocidad de 144 km/h. Calcula los siguientes enunciados:
- A. La aceleración del auto
- B. La distancia recorrida por el auto
- C. El peso del auto en la Tierra
- D. El peso del auto en la Luna (g=1.6 m/s2)
- E. ¿Cómo es el peso del auto en la Tierra comparado con el peso en la Luna?
- F. ¿Cómo es la masa del auto en la Tierra comparada con la masa en la Luna?
- G. La fuerza total que mueve al auto

ETAPA 3. LEYES, PRINCIPIOS Y CONCEPTOS RELACIONADOS CON EL MOVIMIENTO

I. INSTRUCCIONES: Escribe la respuesta correcta.

1. Teoría que supone que la tierra es el centro del universo, que permanece estática y que las estrellas se encuentran en una esfera de cristal y girando alrededor de la tierra
2. Formuló las leyes de la descripción del movimiento planetario sin considerar sus causas.
3. Formuló la Ley de la Gravitación Universal.
4. "La trayectoria de cada planeta alrededor del sol es una elipse y el sol se encuentra en uno de sus focos".
5. ¿En qué parte de la trayectoria de los planetas, alrededor del sol, tienen mayor velocidad? De acuerdo a la 2ª Ley de Kepler.
6. "Dos cuerpos cualesquiera, se atraen entre sí con una fuerza que es directamente proporcional al producto de sus masas e inversamente proporcional al cuadrado de la distancia que hay entre ellos".
7. Astrónomo que recopiló información acerca de la trayectoria y posición de los planetas, lo cual sirvió a Kepler para formular las leyes de la descripción del movimiento planetario
8. "Cada planeta se mueve, de tal modo que una línea imaginaria que lo une con el Sol barre áreas iguales en periodo de tiempos iguales".
9. ¿Qué lugar ocupa el sol con respecto a los planetas de su alrededor, de acuerdo a la primera ley de Kepler?
10. "Los cuadrados de los periodos orbitales de los planetas, son directamente proporcionales a los cubos de las distancias medias o promedios desde el sol".
11. Es el producto de la fuerza por el desplazamiento, en el cual se aplica dicha fuerza:
12 El trabajo es una cantidad física

dirección del desplazamiento, es igual a:
14. El ángulo entre la fuerza aplicada y el desplazamiento para el cual el trabajo tiene su valor máximo es:
15. El ángulo entre la fuerza aplicada y el desplazamiento para el cual el trabajo tiene su valor negativo, es:
16. Es la unidad de trabajo en el Sistema Internacional de unidades
17. Representa el trabajo hecho en la unidad de tiempo.
18. El trabajo realizado para levantar una masa (m) a una altura (h) viene dada por:
19. Es la rapidez con la cual se realiza un trabajo
20. Es la potencia desarrollada cuando de realiza un trabajo de 1 joule a un tiempo de 1 segundo
21. La equivalencia de un caballo de fuerza (Hp) en watts, es:
22. Es la expresión del joule en unidades fundamentales:
23. Es el trabajo realizado por una fuerza de un newton aplicado a lo largo de una distancia de un metro
24. Es todo aquello capaz de realizar un trabajo.
25. Tipo de energía que poseen los cuerpos, cuando por su movimiento o posición son capaces de efectuar un trabajo.
26. Tipo de energía mecánica que poseen un cuerpo debido a su movimiento.
27. Tipo de energía mecánica que tiene un cuerpo debido a su posición.
28. Cuando se realiza un trabajo neto sobre un cuerpo, tal energía se convierte en energía cinética. Tal enunciado corresponde a:

13. La magnitud del trabajo realizado cuando la fuerza forma un ángulo de 90° con la

29. ¿La energía es una cantidad escalar o vectorial?
30. Es la unidad de la energía en el sistema internacional de unidades:
II. RESUELVE LOS PROBLEMAS
1. Si la masa de la Tierra es de 6x1024 kg y su radio es de 6400km. La fuerza de atracción gravitatoria aproximada sobre una masa de 100kg, colocada sobre su superficie, es:
2. Un motor eléctrico produce una fuerza de 980N sobre una cadena de arrastre cuya velocidad es uniforme de 4m/s. Calcula la potencia en Hp.
3. Un balón de básquetbol de 750g cae desde el reposo desde una altura de 122.5m. Calcula:
 a) La energía mecánica al inicio de la caída. b) La energía mecánica a la mitad de la caída c) La velocidad y la altura a la mitad de la caída d) La energía mecánica al llegar al piso
e) La altura y la velocidad al llegar al piso

ETAPA 4. LAS MÁQUINAS, UNA APLICACIÓN DE LOS PRINCIPIOS Y LEYES DEL MOVIMIENTO

 I. INSTRUCCIONES: Escribe la respuesta correcta. Dispositivo que transforma una fuerza de entrada en una fuerza de salida.
2. Elementos de una máquina simple:
3. Para que se usan las máquinas:
4. Barra rígida con un punto de apoyo llamado fulcro.
5. Elementos básicos de una palanca:
6. Según la ley de la conservación de la energía el trabajo de entrada es igual al trabajo de salida y la fórmula de la palanca es:
7. Palanca de primer género:
8. La ventaja mecánica ideal
9. La ventaja mecánica real
10. La eficiencia:
11. Palanca de segundo género (1 EJEMPLO)
12. Palanca de tercer género(1 EJEMPLO)
13. El plano inclinado
14. El torno

II RESUELVE LOS PROBLEMAS

- 1. Una persona va a mover una roca de 2800N con una palanca y se coloca (la persona) a 2.5m del fulcro o punto de apoyo, mientras que la roca está a 40 cm del fulcro.
- a) ¿Qué fuerza debe aplicar la persona?
- b) Calcula la ventaja mecánica ideal
- c) Calcula la ventaja mecánica real
- d) Determina la eficiencia o rendimiento